
        

 

 

 

 

 

 

 

 

 

DELIVERABLE 3.2  

LAYERED SECURITY FRAMEWORK 

 

 

WORK PACKAGE NUMBER: WP3 

WORK PACKAGE TITLE: LAYERED DATA SECURITY 

TYPE: PROTOTYPE 

  

 

 



        

Document Information  

 

iReceptor Plus Project Information 

Project full title Architecture and Tools for the Query of Antibody and T-cell Receptor           
Sequencing Data Repositories for Enabling Improved Personalized       
Medicine and Immunotherapy 

Project acronym iReceptor Plus 

Grant agreement number 825821 

Project coordinator Prof. Gur Yaari 

Project start date and 
duration 

1​st​ January, 2019, 48 months 

Project website http://www.ireceptor-plus.com 

 

Deliverable Information 

Work package number WP3 

Work package title Layered Data Security 

Deliverable number D3.2 

Deliverable title Layered Security Framework 

Description Establish a secure data sharing infrastructure that follows the security 

and privacy guidelines defined for the iReceptor Plus project, providing 

the FAIR principles of scientific data management and stewardship when 

dealing with protected AIRR-seq data. 

Lead beneficiary INESC TEC 

Lead Author(s) INESC TEC 

Contributor(s) INESC TEC, Ascora, SFU, BIU, Sorbonne, UTSW, Haifa, APHP, 

Mitmynid 

 

 



        

Status (Final (F), Draft (D), 
Revised Draft (RV)) 

D 

Dissemination level (Public 
(PU), Restricted to other 
program participants (PP), 
Restricted to a group 
specified by the 
consortium (RE), 
Confidential for 
consortium members only 
(CO)) 

PU 

 

Document History 

Revision Date Modification Author 

1 2019-12-11 
Consolidated version circulated 

internally 

Alexandre Costa, Artur Rocha, 

Ademar Aguiar 

2 

2019-12-12 

to 

2019-12-19 

Document revision 

Tobias HInz, Brian Corrie, Felix 

Breden, Alexandre Costa, 

Artur Rocha, Ademar Aguiar 

3 

2019-12-23 

to 

2019-12-26 

Document revision Gur Yaari, Alexandre Costa 

 

Approvals 

 Name Organisation Date Signature (initials) 

Coordinator Gur Yaari Bar Ilan University 2019-12-23 GY 

WP Leaders Artur Rocha INESC TEC 2019-12-19 AR 

  

 

 



        

Table of Contents 

Executive Summary 6 

Deliverable description 7 

Introduction 8 

Authentication: Identification and Identity Providers 8 

Authorization 8 

OAuth 2.0 9 

User-Managed Access (UMA) 10 

Exploratory Data Analysis 12 

Goals and Security Requirements 12 

Minimal authorization approach 12 

Task Execution 13 

Keycloak 13 

Implementation 13 

Identity Providers and Brokering 14 

EGI Check-in 14 

Integration with Keycloak 14 

Prototype 18 

Analysis API 18 

Users 19 

Resources 19 

Frontend Prototype 22 

Conclusions 24 

  

 

 



        

Executive Summary 

The purpose of this Deliverable is to provide a secure data sharing infrastructure that follows the                

security and privacy aspects defined in Deliverable 3.1 (Holistic Security and Privacy Concept) for              

iReceptor Plus. While the previous deliverable provided the conceptual framework and policies for this              

matter, this deliverable provides concepts for the software implementation that follows the approach of              

layered security, applying them to a prototype iReceptor Repository Service. 

When it comes to the domain of health information and biostatistics, the concern for privacy is a subject                  

of continuous discussion. This is vital when it comes to AIRR-seq data sets, which is subject to strict                  

confidentiality and security constraints and this is especially true when these data sets are sampled from                

human subjects. 

To address the main privacy and security objectives, the implemented framework prototype follows the              

standards and approaches necessary to provide accessibility between the different components of the             

iReceptor Plus infrastructure, providing multiple levels of authentication, authorization and the           

mechanisms for data stewards to control different levels of granularity.   

 

 



        

Deliverable description 

Deliverable 3.2 is the result of the work done in WP3 Task 3.2 and its subtasks. 

The goal of this deliverable is to provide a layered security framework that addresses the security and                 

privacy aspects that surround AIRR-seq data sharing. While Deliverable 3.1 defined the holistic concepts              

and requirements for this subject, Deliverable 3.2 implements the actual software framework of layered              

security between the individual components across the iReceptor Platform. 

The current development stage aims at providing a working prototype that demonstrates the             

capabilities of the proposed secure infrastructure, by providing levels of control at different levels of               

granularity, restricting access at multiple levels (through authentication), as well as restricting access to              

specific types of data (through role-based authorization).  

Access may be restricted to Exploratory Data Analysis, where the user is limited to requesting summary                

characteristics of a certain data set, assuming the analysis process runs while protecting confidentiality              

and privacy by reducing the risk of disclosure of sensitive information. 

Fine-grained authorization is also possible and will enable data stewards to control access to their               

confidential data while at the same time using the iReceptor Platform to enable the secure sharing with                 

researchers who wish to directly access AIRR-seq data sets. 

 

  

 

 



        

1. Introduction 

The concern for privacy is a subject of continuous discussion within the health informatics community,               

especially when it comes to genetic data sets, which are subject to strict confidentiality, security               

constraints, rights and ownerships. At the same time, analyses done on these data sets may provide                

crucial research evidence, however, these analyses must be conducted in such a way as not to                

compromise standards of privacy, regulations and confidentiality for individuals, providers, facilities and            

data stewards. 

Identification is the ability to uniquely identify a user of a system or an application that is running in the                    

system. ​Authentication is the ability to prove that an end-user or application is genuinely who that                

person or what that application claims to be. ​Authorization protects critical resources in a system by                

limiting access only to authorized users and their applications. It prevents the unauthorized use of a                

resource or the use of a resource in an unauthorized manner. 

Authentication: Identification and Identity Providers 

An Identity Provider (IdP) is defined as a system that can provide identity to an end-user through a set of                    

login credentials and ensures the entity is who or what it says it is across the iReceptor Plus                  

components. This makes identity consistent across services and repositories and asserts authentication            

to the user. 

The identity provider either directly authenticates the user, such as by validating a username and               

password, or indirectly authenticates the user, such as by validating an assertion about the user's               

identity as presented by a separate identity provider. 

The type of identity provider depends on the implementation of the service. The main standard used in                 

the implementation of this prototype is OAuth 2.0 along with OpenID Connect, an open standard for                

token-based authentication and authorization over the different components and services to delegate            

secure and controlled access to a software client’s resources . 
1

Authorization 

The authorization process comes after the end-user is properly identified and describes the method for               

providing access control to resources. Resource servers need to rely on information to decide if access                

should be granted to a protected resource. For web based resource servers, that information is usually                

obtained from a security token, usually sent as a bearer token on every request to the server as seen on                    

1 ​https://tools.ietf.org/html/rfc6749  

 

 

https://tools.ietf.org/html/rfc6749


        

Figure 1. For web applications that rely on a session to authenticate users, that information is usually                 

stored in a user’s session, for example through a cookie or local storage, and retrieved from there on                  

each request. 

A resource server may perform authorization decisions based on role-based access control (RBAC),             

where the roles granted to the user trying to access protected resources are checked against the roles                 

mapped to these same resources. But depending on the level of fine-grained authorization required,              

protections may be further refined through additional mechanisms, such as controlling access on a              

per-resource basis and by providing authorization policies and policy decision points. 

The implemented prototype mainly uses an UMA-compliant (User-Managed Access) workflow for           

determining access and for processing policies. 

OAuth 2.0 

OAuth 2.0 defines four roles that establish the interaction flow to access a protected resource. The                

terminology involved in this standard refers to its entities in the following way: 

● Resource Owner ​is the entity capable of granting access to a protected resource by providing the                

necessary credentials (username and passphrase, for example). If this entity is a person, it is referred                

to as an ​end-user. ​This resource owner could be a researcher trying to access an AIRR-seq dataset,                 

for example; 

● Resource Server ​is the server that holds the ​protected resource and is capable of accepting and                

responding to requests for the protected resources, provided that the ​end-user is in possession of an                

access token. 

● Client ​is the platform or application that can make protected resource requests on behalf of the                

resource owner​ with specific authorization. 

● Authorization Server ​is the server capable of issuing access tokens to a ​client after a successful                

authentication by the ​resource owner​ and obtaining authorization. 

The OAuth 2.0 standard allows a resource owner to access protected resources through the means of an                 

access token. This token represents a string that denotes a specific scope, lifetime and other access                

attributes. On a basic authorization code grant flow, this token is normally stored by the client. When a                  

query to a protected endpoint is made this token is traded between the resource server and the client                  

itself to verify its validity. 

 

 

 



        

 
Figure 1: Sequence Diagram for the Authorization Grant Flow 

User-Managed Access (UMA) 

User-Managed Access (UMA) is defined as an OAuth-based access management protocol standard .            
2

Since the scope of the project requires policy enforced access to resources, access management is a                

crucial aspect to consider. It is important to properly identify ​Data Producers or ​Stewards (Data               

Managers) who can manage permissions to their resources and define who can access their resources               

(​Data Consumers​). UMA is a protocol that enables this kind of management, by giving users responsible                

for managing data the ability to regulate access. These resources may be anything from AIRR-seq data                

sets, a study, or even a whole iReceptor Plus node. From an implementation perspective, UMA allows                

for a centralized authorization server by creating authorization policies no matter where the resources              

reside, following the distributed nature of the iReceptor Plus repositories. 

2 ​https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html  

 

 

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html


        

 
Figure 2: User-Managed Authorization flow 

Figure 2 depicts a ​Data Consumer ​(​Requesting Party) accessing a shared resource after proper              

authorization has been granted. This is possible when the ​Data Manager controls the Authorization              

Server and allows proper consent to access data sets. Access levels may depend on how fine-grained the                 

authorization is desired to be. For example, a ​Data Manager shares an AIRR-seq data set with read-only                 

permissions and the ​Requesting Party will have no permissions to modify any of its contents. Access to a                  

data set at any time, forbidding the relay party from accessing data any further. 

The Protection API is accessible through a PAT (Protection API Token) which is a special type of an OAuth                   

2.0 that represents the ​Data Manager’s authorization to use the ​Protection API and with it they can                 

manage any resources, policies, permissions and access UMA standard endpoints. 

 

 



        

Exploratory Data Analysis  

The potential of Exploratory Data Analysis (EDA) and data mining tools to extract accurate and reliable                

material from confidential data set is an on-going challenge for research and development. Even if the                

right of direct access to the data has been prohibited, certain results from analyses in the hands of a                   

sophisticated process could be enough to reveal or enable inference on private information. In other               

words, the process of Exploratory Data Analysis empowers a researcher to get insight into the data set in                  

order to summarize its main characteristics without access to the raw AIRR-seq data sets. With the right                 

types of analysis even with limited access, it may be possible to draw clear conclusions. Keeping this in                  

mind, during the implementation of this prototype, by default, users that can access the platform are                

able to make EDA requests freely. Of course, restrictions may be expanded upon in the future and as                  

such, this is controllable through fine-grained authorization. 

Goals and Security Requirements 

In a service-oriented architecture environment like iReceptor Plus, the platform is composed of services              

from different sources, such as iReceptor and VDJServer. The composition is technology-agnostic, as the              

applications are not based on similar technologies, languages or platforms. This distributed aspect of              

iReceptor Plus and the technology-heterogeneity of the integrated applications raise challenges for            

security. Therefore it is vital to determine an interoperable mechanism for managing resources,             

independent of the technology and programming languages used for the implementation. The goal of              

this task and with the implementation of this prototype is to build and demonstrate the feasibility of                 

complementing the iReceptor Plus components with a working Authentication and Authorization           

Infrastructure (AAI).  

 

Minimal authorization approach 

For the implementation of this security prototype a proposal for a minimal approach for private nodes                

was considered:  

● If a ​Data Manager authorizes a researcher (​Data Consumer​) to access their node, then the               

researcher will be able to access all the statistics endpoints from all studies. 

● A node manager can grant users the ability to access/download raw data on a study-level basis.  

 

 



        

2. Task Execution 

Keycloak 

The challenge for providing identity brokering, data access management and authorization will bemet             

with Keycloak. It is an open source, free, identity and access management platform, providing multiple               

standards and protocols for client and end-user authentication and authorization. When it comes to              

identity brokering, it supports integration with external IdP services and has built-in support for user               

federation through LDAP and Active Directory. The main standard authentication and authorization            

protocols are OpenID Connect, OAuth 2.0 and SAML 2.0 and User-Managed Access (UMA) for              

authorization and the protection API. Keycloak is a UMA 2.0 compliant authorization server that              

provides most UMA capabilities and thus is possible to implement policy enforced access to resources.               

Data Managers can manage permissions to their resources and decide who can access a resource. Thus,                

Keycloak can also be used as a sharing management service from which ownership and access can be                 

managed. 

When it comes to implementing Keycloak support into the iReceptor Plus services, it offers support               

adapters made available in multiple languages such as Java, JavaScript and Node.JS. This means it can                

easily be integrated in any web-based application. If no adapters are available for a specific library or                 

language, Keycloak is interoperable and implementation can follow the standard workflow and            

endpoints used for authentication and authorization. 

 

Implementation 

The Keycloak service implemented for this prototype is available at: 

https://ireceptorplus.inesctec.pt/auth​ [last access: 2019-12-10] 

Keycloak’s OAuth 2.0 standard endpoints (OpenID Connect more specifically) are available through a             

standardized endpoint called ​well-known​. This endpoint is used by OAuth Clients to determine the              

location of the various endpoints, for example, for obtaining ​Access Tokens​, for obtaining ​UserInfo​, for               

determining ​Grant Types​:  
https://ireceptorplus.inesctec.pt/auth/realms/iReceptorPlus/.well-known/openid-configuration [last  

access: 2019-12-10] 

 

A starting realm named “iReceptorPlus” was created for the purpose of this prototype. The concept of a                 

realm is modularity. It secures and manages security metadata for a set of users, applications, and                

registered OAuth clients. Users can be created within a specific realm within the Administration console.               

 

 

https://ireceptorplus.inesctec.pt/auth
https://ireceptorplus.inesctec.pt/auth/realms/iReceptorPlus/.well-known/openid-configuration


        

Roles (permission types) can be defined at the realm level and admins can also set up user role                  

mappings to assign these permissions to specific users. 

Identity Providers and Brokering 

With the use of Keycloak it is possible to integrate external identity providers. An identity provider is                 

usually based on a specific protocol that is used to communicate authentication and authorization              

information to their end-users. It can be a social provider such as ORCID or Github, it can be an internal                    

service such as Tapis  or it can be a business level service like EGI Check-in or EOSC’s ELIXIR . 3 4

When using Keycloak as an identity broker, users are not forced to provide their credentials in order to                  

authenticate in a specific realm. Instead, they are presented with a list of identity providers from which                 

they can authenticate when they land on the login page. 

EGI Check-in 

EGI is a federated e-Infrastructure dedicated to providing advanced computing services for research and              

innovation and is coordinated by the EGI Foundation. EGI Check-in, also known as EGI AAI, is a proxy                  

service that operates as a central hub to connect Identity Providers with EGI’s service providers and                

resources using federated authentication mechanisms. Through this service, users can authenticate with            

the credentials provided by the IdP of their home organisation (for example, through eduGAIN), as well                

as using social identity providers (for example, ORCID). To achieve this, the EGI AAI has built-in support                 

for SAML, OpenID Connect and OAuth2. This means it can be directly integrated into iReceptor Plus’                

Keycloak instance. 

 

Integration with Keycloak 

EGI Check-in documents the procedures for integration through a ​wiki platform available through their              

own service located at: ​https://wiki.egi.eu/wiki/AAI_guide_for_SPs [last access: 2019-12-10]. These         

procedures were followed for the development of the prototype platform.  

As mentioned previously, both EGI Check-in and Keycloak may communicate through the            

interoperability of the OAuth 2.0 standard (more specifically OpenID Connect). Following this workflow,             

it is first necessary to register Keycloak as a ​Client on EGI’s side. EGI Check-in provides a development                  

environment of their AAI that does not require formal registration (i.e. does not require a possible                

lengthy administration approval), available at: ​https://aai-dev.egi.eu/oidc [last access: 2019-12-10].         

Figure 3 shows the Client configured for Keycloak, including the ​redirect_uri that points to where               

3 https://tacc-cloud.readthedocs.io/projects/agave/en/latest/ 
4 https://elixir-europe.org/ 

 

 

https://wiki.egi.eu/wiki/AAI_guide_for_SPs
https://aai-dev.egi.eu/oidc


        

iReceptor Plus’ Keycloak is located. While registering this client, it is necessary to provide ​well-known               

configurations such as the ​authorization_endpoints​ and the ​token_endpoint​. 

 

 
Figure 3: EGI Check-in AII - OpenID Connect Client management, showing an entry created with keycloak's settings configured 

When configured successfully this Client will be given a ​client_id ​and a ​client_secret that must be                

specified in Keycloak’s configurations. Figure 4 shows how to initialize the registration of a new Identity                

Broker on Keycloak’s side. The configuration that needs to be provided is like the previous step, being                 

required to provide the ​well-known​ configurations, but this time for EGI Check-in: 

https://aai-dev.egi.eu/oidc/.well-known/openid-configuration​ [last access: 2019-12-10]. 

 

 

https://aai-dev.egi.eu/oidc/.well-known/openid-configuration


        

 
Figure 4: Keycloak Administrative Console - Configuring an external Identity Broker 

On a successful configuration, Keycloak will automatically link the IdP’s account with its own database.               

Any Client protected by Keycloak will now land on the Authentication page shown in Figure 5. Clicking                 

EGI Check-in will take the user to Check-in’s Authentication page as shown in Figure 6. 

 
Figure 5: Keycloak's Client Authentication page - Configured with EGI Check-in as an Identity Broker 

 

 



        

 
Figure 6: EGI Check-in's Client Authentication page 

Prototype 

Analysis API 

The Analysis API is the service responsible for providing analysis results on AIRR-seq data sets. The                

development of this prototype followed the usage of a mock-up Analysis API using the proposed               

implementation specifications available at: 

https://github.com/ireceptor-plus/WP4/blob/cdd3c0067d83308d9040838b206f2ccae4e7e826/specs/an

alysis-api.yaml​ [last access: 2019-12-10] 

The mock-up Analysis API works as a backend web service and will feed the frontend side to display and                   

interact with its contents. In addition to the proposed specification. This version includes some              

additional endpoints to list repositories and repertoires. 

The implemented mockup Analysis API is online at: 

https://ireceptorplus.inesctec.pt/loop-airr/irplus/v1/analysis/explorer/​ [last access: 2019-12-10] 

 

 

https://github.com/ireceptor-plus/WP4/blob/cdd3c0067d83308d9040838b206f2ccae4e7e826/specs/analysis-api.yaml
https://github.com/ireceptor-plus/WP4/blob/cdd3c0067d83308d9040838b206f2ccae4e7e826/specs/analysis-api.yaml
https://ireceptorplus.inesctec.pt/loop-airr/irplus/v1/analysis/explorer/


        

 

Users 

To demonstrate the inner workings of the prototype we will be referring to two example users: 

● siramik vase – ​Data Manager ​of the studies, may perform any operations, including access raw               

sequences directly. 

● emma nate – ​Data Consumer and doesn’t manage any studies but may freely request Exploratory               

Data Analysis. Has the “request-analysis” role. 

 

Resources 

In Keycloak (and the UMA standard) ​resources represent the set of entities that will be managed by the                  

authorization service. Protected ​resources may be defined by type (for example, a study, repository,              

sample), URI (an API endpoint), ​owner ​(the users responsible for managing permissions), scope and/or              

permissions. 

Figure 8 shows an example of a study managed by ​siramik vase ​(PRJNA312319)​, configurable on               

Keycloak’s interface. In addition to the study resource, it is also possible to control accessibility to                

specific endpoints. In Figure 8 both /clonotypes and /rearrangement endpoints from the Analysis API              

have been defined as resources, which will allow us to create custom policies and permissions for them                 

if desired. 

 
Figure 8: Keycloak Authorization Manager, example of an AIRR-seq study ownership and API endpoints controlled  as resources 

 

 



        

As an example of a more fine-grained authorization, our goal is to allow Exploratory Data Analysis only                 

to users who have the “request-analysis” role and let us assume this user is trying to access the                  

/clonotypes endpoint. The next step is to create a policy that defines that a user must have this role, as                    

seen in Figure 9. Policies define the logical conditions that must be satisfied before granting access to an                  

object. 

 

 
Figure 9: Keycloak Authorization Manager, defining a Policy where the user is required to have the role "request-analysis" 

 

Policies are generally more generic and do not define restrictions for specific resources. That is where                

permissions come in. Permissions are more specific to the resource that is being protected and associate                

them to the policy that must be evaluated before deciding whether access should be granted to the user                  

that is making the request. In Figure 10, the Permissions for the /clonotypes endpoint is being defined                 

 

 



        

where the Policy requirement of having the “request-analysis” role is defined as one of the evaluations                

that must pass before deciding access. 

 
Figure 10: Keycloak Authorization Manager, defining a Permission for the /clonotypes endpoint, with the Policy requirement of 

having the "request-analysis" role 

On the backend side of things, the server will rely on using the UMA standard protocol to check if the                    

user has the required permissions for the resource it is trying to access. Assume the user is trying to                   

request an analysis to the /clonotypes endpoint. A request of the following type will be made by the                  

backend to determine if the user has permissions for this operation: 

HTTP POST: http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token 

FORM DATA: 

"grant_type": "urn:ietf:params:oauth:grant-type:uma-ticket", 

"audience": <backend-client-name>, 

"permission": Clonotypes, 

"response_mode": "decision" 

 

 



        

 

Frontend Prototype 

The Frontend prototype is a mock-up web interface that serves as a medium to interact with the                 

mock-up Analysis API. The first requirement to be able to access the web interface is to be signed-in. The                   

authentication process follows the flow described in the Keycloak section. The user must be either               

registered in Keycloak’s database directly or may sign-in through EGI Check-in’s Identity Brokering             

service (or any other that may be integrated in the future). If the last option is desired, Keycloak will                   

automatically link the Identity Broker’s referring account with its own database, making it possible to               

tailor permissions and authorization options directly on iReceptor Plus’ side. 

Figure 11 shows the homepage of the frontend prototype. The successfully authenticated user is              

displayed on the top-right corner and several options are available for navigation. 

 
Figure 11: Frontend Prototype: homepage showing the various menus and links to relevant content 

Following the proposal for the prototype, both users can see the available studies, as shown in Figure                 

12. However, access to Exploratory Data Analysis is limited by the “request-analysis” role and access to                

raw sequences is limited to ​Data Managers​ and users who the  ​manager​ has shared data with. 

 

 

 



        

 
Figure 12: Frontend Prototype - A user lists accessible studies 

While logged in as ​emma nate​, since this is not the ​manager ​of the study, when trying to access a                    

sample, the button “Request Raw Sequence Access” will be displayed on the screen, as shown in Figure                 

13. 

 
Figure 13: Frontend Prototype - User with no management access to a Sample in the study is unable to view raw sequences 

 

 



        

Through ​siramik vase’s profile, it is possible to share the study with other users. By clicking the                 

username on the top-right corner, the user can select “Account Management” (Figure 14), which will               

take them to the page where they can manage their resources. Here the ​Data Manager​can enter the                 

study and input the username/email of the person they wish to share the study with. 

 

  

Figure 14: Account Management and user managed resources 

Figure 15 shows that the resource has been shared with ​emma nate​. This access may be revoked at any                   

time. ​Emma nate​ is now able to successfully access the raw sequences, as seen in Figure 16. 

 
Figure 15: Data Manager shares resource access with a user 

 

 



        

 
Figure 16: User received a shared resource and is now able to request raw data from the Sample 

 

6. Conclusions and Future Actions 

This deliverable is the first version of a prototype, implementing the Layered Security             

Framework in iReceptor Plus. 

The main goal of the implemented software is to provide a technical framework to test and                

validate the approaches defined in D3.1 for authentication, authorization and auditing, in due             

respect of defined policies and applicable regulations, while assessing its impact across the             

global infrastructure. 

A vertical prototype (architectural spike) has been developed for the M12 version of this              

deliverable so that integration issues resulting from the inclusion of security across the different              

components of the software ecosystem can be tackled from early on. 

Further updates of this deliverable will be released in M24 and M36 as new use cases are                 

incorporated, consolidating functional and non-functional requirements of the whole         

infrastructure and in particular of the implemented layered security mechanisms.  

 

 

 


